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Lm~: Math. Gen., vol. 9, NO. 4, 1976. Printed in Great Britain. @ 1976 

ne Lie group of Newton's and Lagrange's equations for the 
-o& OscillatorT 

C E Wulfman and B G WybourneS 
Department of Physics, University of the Pacific, Stockton, California 95204, USA 

Received 6 October 1975 

Abstract. Lie's theory of differential equations is applied to the equation of motion of the 
classical one-dimensional harmonic oscillator. The equation is found to be invariant under 
a global Lie group of point transformations that is shown to be SL(3, R). The physical 
significance of the analysis and the results is considered. It is shown that the periodicity of 
the motion is a local topological property of the equation, while the length of the periods 
depends upon global properties. 

Ihe determination of the group of transformations that leaves invariant a given 
differential equation derives from the early work of Lie (cf Lie 1891, 1922). Though 
Iie'sdiscoveries have stimulated many developments in mathematics and physics, for a 

of historical reasons his contributions to algebra have received more attention 
&his contributions to the analysis of differential equations. Aside from the develop- 
ment of the abstract theory of topological groups, this later aspect remained for half a 
WtUrY in much the state that Lie left it at the time of his death at the turn of the 
en%. Then in the nineteen fifties and sixties Lie's approach was extended to partial 
&eRntial equations of arbitrary order (Ovsjannikov 1962) and to boundary value 
pblem (Human 1967, Bluman and Cole 1969). Subsequently it was shown that it is 
qmtto consider the invariance of partial differential equations under a wider class 
Of ~ n h ~ ~ u s  transformations than had previously been recognized (Anderson er a! 
1'% b, c). 

In recent years group theoretical analyses of specific differential equations have also 
increasing application, for example, in studies of heat transport (Bluman 

1969, Bluman 1971), hydrodynamics (Ovsjannikov 1962, Rosen and Ullrich 
193)$ and chemical kinetics (Wulfman and Shibuya 1973). Many applications to 
@@'%hg Problems are collected in the books of Ames ( h e s  1965, 1972). 
Applications of the theory of continuous groups in quantum mechanics are legion, and 

alisting of recent work can be given here. However we would call the reader's 
to several articles on the quantum mechanical harmonic oscillator (Baker 

1956zBargmann and Moshinsky 1960, 1961, Barut 1965). 
ilpveshga. 
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508 C E Wulfmn and B G Wyboume 

Lie himelf first obtained the generators of the invariance group of N~~~ 
equation for the free particle. However it appears that the corresponding analysisf or 
the harmonic oscillator was first carried out by R L Anderson (Anderson and ~~h 
1974). In this paper we sketch Anderson's derivation for completeness, a d  then 
classify the algebra and determine the global Lie group Of the equation of motion. % 
algebra is shown to be a non-compact realization of Az, and the global groupkshowb 
be sL(3, R). It is shown that, simply because the algebra has a compact subalgebra 
C0nt-g the generator of time translations, the motion of the osciUator is periodic. 
% fact, and the length of the period, are determined without reference to the 
solutions of the equation of motion. In the remainder of the paper, a number of further 
consequences of the group structure are discussed. 

2. The infinitesimal transformations 

With an appropriate choice of units, Newton's or Lagrange's equation of motion fora 
one-dimensional harmonic oscillator may be written as 

d2x/dt2 + x = 0, or i + x = o .  (1) 
We seek those infinitesimal transformations of x and t that leave the equation of motion 
form invariant-hence interconvert its solutions. 

Consider a transformation that carries a point (x ,  t) into a point (XI, t') such that 

X' = @(x, t, a,+ Sa) t' = q ( x ,  r, a,+ Sa), (2) 

where for the identity transformation x = @(x, r, a,) and t = q(x, t, U,,). Then the 
infinitesimal change in x and t due to the infinitesimal variation Sa of the parameter a is 
given by 

where 
SX = tSu St = gSa (3) 

t = t ( x ,  t )  = (a@/aa), (4) 77 = dx, t )  = (a*/aa),. 

If f (x, t )  is an analytic function of x, t then under an infinitesimal transformation 
Sf = UfSa, (9 

where 
(6) 

The differential equation of interest is of second order, so it is necessWtoansider 
the second extension of the point transformation (2). The infinitesimal operator IYd 
the second extended transformation is of the form (cf Lie 1891,1922, Coben 1931) 

U = ta/ax + qa/at. 

U" = U+ fa /a i  + Fa/af 
where 
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~ p e  quation of motion of the oscillator will be form invariant under the transfor- 
*generated by U, U', U" if and only if 

U"(f+ x) = 0 whenever z + x = o ,  

wg to &e condition that 

f,a'Elatz-(at/ax - 2 a d a t ) ~  +(2a2t/axat -a2q/at2+3xa~/ax)i  

+ ( a 2 ~ / a ~ 2 - 2 a 2 ~ / a ~ a t ) i 2 - ( a 2 ~ / a ~ 2 ) i 3  = 0. 

a2q/ax2 = o 
a2t/ax2 -2a'q/axat = o 
2 a z g / a ~ a r - a 2 ~ / a t 2 + 3 ~ a ~ / a ~  = o 
a2gJat2 - xag/ax + 2xaq/at + 5 = 0. 

heqwtion (11) to hold for all values of the variables, it must be true that 

Ibe above €o& equations may be integrated to give 
8 

U =  biXi 
i = l  

nbere the bi are integration constants and the Xi are the following operators (or any 
h i y  independent linear combinations of them): 

x, =(1+x2) sin t a1ax-x cos t a/at 

X, = (1 -x2> sin t a/ax + x cos t alar 
X, = (1 + x') COS r a/ax + X  sin t a/at 

X4=(1-x2)costa/ax-xsinta/at 

X, = a/at 

X, = xa/ax 

X7=x cos2ta/ax+sin2ta/at 

X,= - x  sin 2t a/ax+cos 2t alar. 
Ihem@cients I' of the first extensions of these operators are: 

I: = x i  sin t + (1 + x2 + i2 )  cos t 

ti= -xi  sin t +(I - x 2 - i 2 )  cos t 

I ~ = x i c o s t - ( l + x Z + i Z ) s i n t  

t i= -x i  cos t+ (- 1 + x2+iz)  sin t 

t :=0 

t:=i 
t ; = - i ~ s 2 t - 2 x s i n 2 t  

I; = i sin 2t - 2x cos 2r. 
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The corresponding coefficients of the second extensions are: 

= - (1 + x’) sin f + 3x( x + x) cos t 

e:’= -(1-x2)sint-3x(x+x)cos t 

5;’ = -(I + x 2 )  cos t -3i(x +i) sin t 

e:= -(1-x2)cos f + 3 3 i ( X + X ) S i n  t 

g = 0  
g=f 
e:’= -4x cos 2t - 3 f  cos 21 

5:=4x sin 2t+3f sin 2t. 

we have made use of the freedom to pick linear combinations of operaton SO 

enswe that the Xi of equations (14) are a basis for a Lie algebra having a diagonal metric 
tensor (see next section). 

3. The Lie algebra 

The extended operators obey the same commutation rules as the Xj; 

where the c$ are structure constants. The complete set of commutators is given in table 
1. The Xi clearly satisfy the requirements of a Lie algebra. 

That this Lie algebra is semi-simple may be seen by constructing the metric tensor 

g. 11 = CYCk ik Im (16) 
and showing that the determinant of gij is non-vanishing, as required by Cartan’s 
criterion for semi-simplicity. Use of table 1 shows that gjj is diagonal with 

+ 12 i = 2,4 ,7 ,8  
gji = +4  i=6 [ -12 i = 1,3,5. 

Table 1. The commutators [X,, Xj] of the infinitesimal operators. 

xi % 
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w&e metric is indefinite we conclude that the Lie algebra is that of a Lie group 
non-compact. The three operators XI, X3, X5 form a compact subalgebra 

d a t e d  with a negative definite metric g,  = -2S,(i, j = 1,3,5). 
uear combinations of the Xi may be formed so as to cast the Lie algebra into the 

p w e y l  standard form, leading to its identification as a non-compact (real) form of 
myS A2 algebra. In particular we find 

HI = (i/2)a/at H2 = 4(3)’/2xa/ax 

E= = e-2”(ia/et + x a / a x )  

E, = e-”(x2d/ax +ixa/at) 

E, = e-”a/ax 

E-, = e2”(ia/dt-xd/dx) 

E-, = e”a/ax 
E-, =e”(x2a/ax -ixa/at). 

%roots fa, *PI * y  are respectively (* 1, o), (hi, *$(3)1/2), c.4, ~ ( 3 ) ~ ’ ~ ) .  

4 Finite tramformations and path curves 

Merent linear combinations of the generators X, are the generators of different 
infinitesimal and finite transformations. For simple operators the effect of a finite 
transformation may be most easily determined by exponentiation of the infinitesimal 
cperators. The results listed for X, and X, in table 2 have been obtained in this way. 
htheremainingoperators it is simpler to integrate the system of differential equations 

For future reference we shall consider the process in some detail for the case of XI. 
b a t i n g  

dx‘ - dt’ - 
(I +XI’) sin t‘ - x ’  cos t’ 

abdsthe path curves, or invariant functions, of the one-parameter group generated 
bx,. These are 

(20) ( I+xf2) - ’  cos2t‘=(1+x2)-1cOS2t= k 2 ;  Os k 2 s  1. 
%[&ntative members of this family of curves are sketched in figure 1. Now, to 
%te 

equation (20) to eliminate sin t’, and make the substitution 
u = x ( l + x )  2 -1/2 , 

then gives 

U‘= (1 - k2)l” sin(* a +a); a = sin-’[x(l + ~ ~ - c o s ~ t ) - ~ ’ ~ ] .  (23) 

the + sign without loss of generality. Transformations with positive 
thenQny the initial point (x ,  t )  counterclockwise along the path curve as Q is 

one reaches the final value of a and the point (x ’ ,  t’). Negative values of 

P tmay 
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x 

omnespond to motion in the inverse direction. With this convention, 

[ I + x Z - ( 1 + x 2 - c o s 2 t )  sin2(a +(Y) ]~/~ '  

X I =  (I +x2-cos2t)1/2 sin(a +a) 

h follows from this result and equation (20) that the finite transformation of t gives a 
dne of t' on the path curve such that 

-branch of the inverse trigonometric function being chosen for which 

dt'lda = -x '  COS t. (25b) 
&for the moment, we eliminate from consideration the exceptional path curves for 

k=O, and k = f 1, then it is easy to determine that changing the value of a 
~ h ~ o u s l y  from a = 0 to a = T carries a point half-way around the path curve, while 
%g a from a = 0 to a = - T carries it half-way round in the reverse direction. The 
wonnations for which a = f T give identical results. Thus, for all these unexcep- 
hd Path curves we may choose the range of a to be 

- T S U S T ;  -T=T. (26) 
we now consider the exceptional path curves. When ( ( x ,  t )  = v(x, t )  = 0 for Some 

pJint (4 t), this point will be left invariant by the finite transformation defined by 6 and 
! For the transformations generated by XI this happens if x = 0, sin t =O. The 
w t W h  are therefore (x,  t )  = (0, m), n = 0, f 1, f 2 . . . . These points all lie on 
pat6 for which k 2  = 1, curves which have degenerated into single points. As 
f'* the Path Curves approach a series of straight lines parallel to the x axis and 
?@P% the t axis at t = m ~ / 2 ,  m = f 1 , * 3 . . . . The closed path curves of 

extent in the t direction are obtained when k differs infinitesimally from 
@' It bportant to note that the closed curves centred at t = 0 do not touch those F! at t= T, etc. Thus in all WeS as one varies a over the range (26) an initial point 

continuously through every point on each of the closed path curves, and 
in the t direction is bounded. W e n  k = 0 the group generated by XI 
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continue to act transitively on the path curve, though the motion in 
unbounded. 

Nuation (26) verifies the conclusion of 0 3 that XI generates a compact subgroup. 

5. The three-parameter compact subgroup: oscillator time 

We have seen that the operators XI, X3, X5 generate a compact subgroup. ~ ~ f i ~ f i  ~ 

might be either SU(2) or SO(3). In this section we show that the subgroup is in faa 

SO(3). 
Consider an operator of the subgroup of the form 

(21) G(a) = exp(alXl + a3X3 + a5X5) 
which acts on the coordinates (x, t). If (x’ ,  t‘) is another pair of coordinates related to 
(x, t )  by the transformation 

(x ’ ,  t’) = G(b)(x, t )  (24 

G(u‘) = G(b)G(u)G(b)-’. (29) 
The transformation G(u)oG(u’)  is an inner automorphism of the group, heacea 
homeomorphism, so the topological properties of G(a’) are the same as those of @a) 
(d Pontryagin 1966 especially 000 17,24,41). 

The parameters U’ are related to the parameters U by the action of the adjointgroup 

(4, a:, a;) = g(b)(a1, a3, as) (30) 

g(b)  =exp(b,Yl+b3Y3+b5Y5). (311 

The generators Yl of the adjoint group, determined solely by the commuatim 
relations of the X,, are (d Racah 1965) 

then, in the x’, t’ system, the action of G(a) is given by the conjugate operator 

where 

Yl = - a3a/aa5 + a5d/aa, 

Y3 = - u5a/aa1 + ala/aa, (32) 

Y5 = - ala/aa3 + a3a/aal. 

It is evident that the adjoint group leaves invariant the quadratic form a:+dta:*and 
that the group acts transitively on each of its invariant surfaces, a2 =constant. We may 
furthermore choose b such that in the new system of coordinates the group action 
given entirely by the action of the one-parameter subgroup generated by sud 
that a: = a; = 0. In this case we must have 

a ’ 2 -  2 2 2 2 , - a l + a 3 + q 5 S r ,  -r=r. (33) 

The group in question is therefore SO(3). 

we consider a transformation in which a, and a3 are zero. We then have 

AS XS is the time translation generator a/&, this implies that if f ( t> is aWsolutiQnof& 

We may draw further consequences from the argument of the pre~oUsPm~pb’  

2 (34) a s s  IT2;  -r=r. 
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espation of motion then 
f(t - 71.) = f ( t  + T) (35) 

for any choice of t. The motion is therefore cyclic with period 2 ~ .  
so far as the oscillator is concerned, r -t 2a = t, which is of course the reason 

d a t o f i  are used as clocks. This behaviour of the oscillator is reflected in the Lie 
of its equation of motion by the existence of the compact subgroup SO(3) 

S‘wg the time translation operation. What is perhaps more surprising is the fact 
that &e existence of periodic motion is reflected in the existence of a compact 
snbalgebra, that is at the local level. The direct physical question settled by the global 
w o n  of this section was not whether the motion is periodic, but rather whether the 
motion has period 271. or 47r! 

Q ne global Lie group of the oscillator 

h u s e  the operators XI . . . X8 are of Lie’s type and close under commutation, it 
follows from the converse of his third theorem that they integrate to an eight-parameter 
pbal Lie group. It is well known that the algebra A2 can only generate three Lie 
groups: SU(3), SU(2, l), and SL(3, R). As only the last of these is both non-compact 
ad in possession of an SO(3) subgroup, the results of the previous sections identify 
%3, R) as the global Lie group of Newton’s or Lagrange’s equation for the oscillator. 

1. Transformation of solutions 

hy transformation that leaves differential equation (1) invariant necessarily trans- 
formsasolution x =f(t)  into a solution x’=f ’ ( t ’ ) .  If a point transfonnation is viewed in 
thepassive sense, it is viewed as simply re-expressing a solution f(t)  in a new coordinate 
system asf’(f’). The problem of deciding whether f’(t’) is to be considered to represent 
the Same or a different state of a physical system is the problem of deciding which 
qbsemers are to be considered equivalent. This is a question that requires a considera- 
&nofawidevariety of physical systems as part of its resolution. It is not our purpose to 

into such considerations here-we shall not consider the question whether the 
and Passive view of the transformations of our SL(3, R) group.are equivalent. 

’%% physical information accrues when the transformations ar‘e viewed in the 
sense. Then one may distinguish between transformations that change the 

dependence of a solution upon the independent variable, and transforma- 
fioaswhose effect is to change the value of the dependent and independent variables 
meleaving the functional form of a solution unchanged. This analysis implies a fued 
‘@ne point in time. 

An extended point transformation 

into x’  = f’(t’) awl 

: s(0 into X’ = g’(r’). 
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Only when 

fV’) =f(t’), and hen= g’(t’) = g W ,  
is the functional form of the solution unchanged. 

For the equation of motion of the oscillator the fundamental existence theoremof 
ordinary dzerential equations allows one to suppose that at each point t for w ~ d  a 
solution exists there is one and only one solution with given values of x a d  i Let us 
fierefore specify the functional form of a solution by specifying the value of x a d i  
the solution takes on at some t h e  to. If 

(37) f 00 )  =A g(t0) = B 
we shall write 

R=[(x, t)a/ax+q(x, t)a/at+[’(x, t, x)a/ai (3% 
be the generator of a one-parameter group T(a)  that leaves the initial v a l ~  A 
invariant, i.e., a group such that, if 

(5 t, 4 = (f(tI7 t, d t ) )  + (A, to, B )  as t+ to (4 
then 

(x‘, t’, 2) = Cf’(t’), t’, g’(t‘)) + (A, to, B’) as t-, to. (41) 

(x‘, t’, i‘) = (x, t, It) + 645,  7,5’> = W), t, 4 + 645,7,53 (42) 

and this is to be an identity in Sa. Because we need only consider terms to first orderin 
Sa it is a matter of indifference whether we suppose 6, 77, 5’ to be functions of 
transformed or the untransformed variables. As we must have 

Now for an infinitesimal transformation T(Sa) we must have 

5,7)+0 as t+to (43) 

((A, 20) = 0, 7 7 6 4 7  to) = 0. (44 
we may conclude that if the initial value A is to be invariant 

An exactly parallel argument shows that in order to have a one-parametersum 
which leaves the slope B invariant, its generator must be such that 

(‘(A, to, B )  = 0. (45, r)(A, to) = 0, 
If we let to = 0, then the general solution of the equation of motion of &5sdam6 

of course 
(46) 

(41 
jllvariad 

(4) 

f-=x = A  cos t+B sin t. 

Applying the results of the previous paragraphs we see that 

are generators of one-parameter groups that leave the initial amplitude A 
while 

21 +2*, 2&*, 2 6 - 2 7  

2ftJi4, 26 + 2, 
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ators of one-parameter groups that leave the initial velocity B invariant. If 
s&$ea r  combinationsof generators with coefficients that are functionsof A, B, 
wtwosts may be enlarged. 

k d g  these results it is important to distinguish a point transformation and a 
wd ”formation. Thus the transformation from 

X=fAB(f)=A COS t+B sin f (49) 

x = A  cos(t+T)+B sin(tf7) (50) 

grtsrarried out by the operator T5(7) = exp 7X5, does not in general yield the state of 
h a a t o r  that f d t )  evolves into after a time 7. Such a time-evolved state would in 
@be developed by a point transformation whose generator changes x into x‘ # x, 
adas tmto t’. Onlyin the exceptional casefAB(t) =fAB(t+-7), (central in 9 5) ,  does 
%adas a time evolution operator. 

Apoint transformation 

(x, O+ (x’, t’) = (T(a)x, T(a)t) = (Ca(x, t, a), W x ,  t, a ) )  (51) 

h , a s  before, g is the derivative of f, and t’ = t + Sa t7. Thus for f ’ ( t ’ )  to be simply 
fk‘l,asonemust have for a general solution x = f(t) to be transformed into x’ = f(t‘), it 
satbe true that 

f = iq.  (54) 
hapoint transformation in x, t space cannot depend upon i, it follows that there is 

operator in our realization of SL(3, R) that converts every solution x = f(t) 
mX‘=f(t3. However particular solutions may be so changed by particular operators. 

there is no operator that carries a general solution into itself at an earlier 
@&rtime as one varies the group parameters, there are operators that transform the 
 foldo of solutions x = x ( t )  into itself without changing time intervals, i.e. such that 

‘‘mq and sufficient condition for this to be true independently of a is that the 
@@tor of the transformation be such that 

d2x’/dt2+x’ = 0 if d2x/dt2+x = 0. (55) 

d2t/dt2 + 6 = 0 on x = x ( t ) .  (56) 
viewpoint is also revealing. Noting that x‘ may be expressed as 

(57) 

(58)  

x’=e ax” x 

‘&&thaton the solution surface x = x ( t )  

[ea”(dZ/dt2 + 1) - (d2/dt2 + 1) eax”]x = 0. 
to be true for all values of the parameter requires that 

[p,  d2/dt2]x = 0. (59) 
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In evaluating this commutator it is necessary to keep in mind that wherever 
derivatives appear they are impIicit functions of t. The transformations that sawcsa, 
or (59) are found to be those generated by XI +Xz, X3 +&, and Xs. Theymnvefih 
solutions x =faB(t) into x ’=  fA’B’(t). 

MI other transformations of the group convert the general solution 

(a) 

(61) 
m e  dependence of these solutions upon t may be quite complicated, as mayha4, for  
example, by substituting x ( t )  into equation (24). However, from an inspection of 
equations (14) it will be seen that every group generator that is t dependent deped 
upon t only via sin t or cos t. Consequently everyfunctionfA,,~(t’(x(f), f; a)) obtain(& 
from a solution x ( t )  by action of the oscillator group SL(3, R) is periodic in both t a&( 
with period 2 r .  

x =faB(t) = A cos t+ B sin t 

into 
X‘ =fAPB, (t’) =A’ COS t‘ + B’ sin t’, t’# r. 
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